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Computationally determined existence and stability of transverse structures.
I. Periodic optical patterns
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We present a Fourier-transform based, computer-assisted, technique to find the stationary solutions of a
model describing a saturable absorber in a driven optical cavity. We illustrate the method by finding essentially
exact hexagonal and roll solutions as a function of wave number and of the input pump. The method, which is
widely applicable, also allows the determination of the domain of staljifitysse balloonof the pattern, and
sheds light on the mechanisms responsible for any instability. To show the usefulness of our numerical
technique, we describe cracking and shrinking patches of patterns in a particular region of parameter space.
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[. INTRODUCTION our knowledge, been calculated for traveling waves and am-
plitude equation patterns in lasdis4—16, where the prob-
Over the last few years, a large variety of optical systemdem is much simpler because these patterns are known ex-
have been shown theoretically, and demonstrated experimenglicitly in analytic form. We confirm our stability analysis by
tally, to produce self-organized structures in the cross sectioRumerically simulating the dynamical evolution of typical
of their output beams. Among such systems are saturabf®!l and hexagonal patterns, and present some interesting
absorbers or Kerr media in cavities, gas cells, liquid-crystaPcenarios in which we accurately determine where these pat-
light values, and semiconductor microresonafdrsé]. Be- terns lose stability and the mechanisms by which they do so.

cause of the speed and possible compactness of optical dginally, Sec. VI provides a brief conclusion.
vices, such phenomena have the potential for applications in
information storage and processifig8]. Il. MODEL

lTh% sttructtureséaobserve';j falll'tm ag]yg mtg tw:) c:jasc'js,es: lo- We demonstrate our approach using the example of a
callized structurete.g., cavity soliton and extended, pe-  saturable absorber in a cavity, first introduced in this context

riodic patterns. _It is the_lat_ter on which we fogus in this paper, . [1], and subsequently studied in some detai[7¢9,17—

because technlqu_es similar to thos_e we discuss _here ha‘ﬁ]- Although we have chosen a particular model system, our
already been applied to the former in our companion papefechnique should be very widely applicable for pattern-
[9] and[10-12. _ forming models, whether in optics or other fields of science.

We have developed a computer-assisted techni§ee.  \ve also expect that qualitatively similar instability scenarios
1), valid for arbitrary values of the system parameters,can be found adjacent to the Busse balloon of many other
which can find the stationary solutions of nonlinear partialsystems.
differential equations such as those used to model the above Our system is usually described using the following par-
systems. It uses a Newton-type method and a Fourier transial differential equation1,7]:
form to evaluate the spatial derivatives. The Newton method
automatically gives the linearization around the found solu-
tions and therefore the method is easily extended to find their HE=—E
eigenspectrum and the spatial form of any eigenmode. Thus,
the stability of the pattern can be determined, as can the
nature of any instability. whereE(x,y,t) is the slowly varying amplitude of the intra-

In Secs. IV and V, this method will be demonstrated bycavity electric field. The time is scaled to a cavity lifetime
finding abitrarily accurate roll and hexagonal solutions for ar and VZ is the transverse Laplaciaft+ 195. The cavity
model of a saturable absorber in a driven optical cavitycontains an ensemble of two-level atoms and is driven by a
These patterned solutions will be shown as a function oplane-wave input fieldg,, assumed to be resonant in fre-
their wave number and intensity of the homogeneous soluguency with the atomic transition. The field is detunedéby
tion with which they coexist, the latter being a convenientfrom the nearest longitudinal cavity mode. The “cooperativ-
parametrization of the input driving field. We hence find theity” parameterC gives the aggregate strength of the coupling
patterns’ domain of stability—known as tHgusse balloon between the cavity field and the atoms.

[13]. In optics, this domain has previously only, to the best of We choosef=—1.2 in which case this equation has a
unigue stationary, spatially homogeneous solutior E,.
The corresponding intracavity intensity= |E,|? is thus also

o -
(l+|0)+1+— +E|+|VLE, (1)

|E[?

*Electronic address: willie@phys.strath.ac.uk unigue, and is a more convenient control parameter Ean
"Electronic address: gianluca@phys.strath.ac.uk itself. We also define a field throughE=Eq(1+A), which
*Electronic address: jmc@phys.strath.ac.uk obeys the following equation, fully equivalent to E4):
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2C accurate stationary solution to E@). This process can be
HA=—(1+10OA+ repeated for a range of values of the control paramesed
the magnitude of the pattern’s spatial wave-vedtoiNote
2C(1+A) , that patterns typically e>'<ist over_ntinugmof K, and that
— VIA. 2 even though we discretize the field within the unit cell, we
1+1(1+A)(1+AY) can setk’s value to machine precision. This enables us to

meaningfully distinguish between patterns with arbitrarily
close values ok, and so we can accurately determine the
boundary of the Busse Balloon. In contrast, a simulation
method can only find solutions periodic on the simulation
grid, so to determine anything other than a very codrse
dependence of, e.g., stability is prohibitive in terms of com-
Puter resource.
Simulation techniques have a similar difficulty with the
erturbation stability of a pattern. Since one can only test
ability with regard to grid-compatible perturbations, one

Linear stability analysis of the trivial homogeneous solution
A=0 of Eq.(2) (or of E=E, of Eq. (1) [1]) shows that it is
stable outside the rande<I <I, wherel , are the roots of
(1+1)2=2C(1—1). We takeC=5.4, givingl .= 1.65. Per-
turbations with spatial wave-vectég,=\— 6 have positive
growth rate across the entire unstable range, leading to he
agonal or roll patterns, depending on parameter valliéks

No nontrivial analytic solutions of Eq2) are known, how-
ever, and so the nature and stability of these patterns have

be determined numerically. This can be done with straight5 oniy get a coarse representation of the spatial instability
forward simulation of the partial differential equatioh7l,  gpectrum. In contrast, our method is easily adapted to find

but th|s_approach.|s I|m|ted. in practice to stable solutlons,the stability of a given pattern to perturbationsasfy wave
and typically requires long integration times for parameter,

. . . . . vector, whether commensurate or not.
scans, especially in two dimensiofZD). In the next section, We make the ansatz
we adopt a different approach, in which we use computer
techniques to find essentially exact stationary solutions to
Eq. (2), and determine their stability. A(r)=Aq(r)+ug(ryexpidk-r)

+oi(ryexp —idk-r).
Ill. NUMERICAL TECHNIQUES d( 1) eXH )

We aim first to determine nontrivial stationary field distri- By analogy with Bloch functions in solid-state physics

butions_A=AS(r) for Eq. (2). We d(_) this by setting the left- Uge(r) ando (1) have the same periodicity #s(r) anddk
hand side equal to zero and solving the resulting boundarysan peany vector within the “Brillouin zone,” meaning that
value problem. In other works, this approach has been use&k:dk K+ dkoK, with — /| T;| <dk < /| T|.

to study localized solutions to this and related equations Inse%tinlg this ansatz into the discretized IEﬁl and lin-

[2,7,9,11,12, but here we look for periodic patterns, either gaizing inu andv gives a matrix problem as a function of
stripes (rolls) or hexagons. Rolls and hexagons, and als

square and honeycomb solutions have been found using a’
different approach, in which the desired pattern is selected,
and if necessary stabilized, by Fourier filterifg], but that dfu u
method was not used to systematically study the stability of dt =)
patterns, e.g., as a function of wavevector.

To allow us flexibility in studying different types of peri- ) ) . )
odic solutions, we define a set of basis vectBssand T, ~ WhereJis a matrix. For a grid of 1816 (r,r,) values,Jis

such that they are the smallest vectors which satisfy typically of size 512 512. The resulting eigenproblem is
easily solved on modern workstations, leading to eigenvalues
Al(r)=Ag(r+nT;+mT,), N (dk). By performing this analysis for appropriate values or

ranges ofdk, the stability of the pattern can be determined.

nandm being integers. For example, vectors of equal lengthOf course the computer time needed to explore the entire
separated byr/3 give a unit cell for hexagons with spatial Brillouin zone may be substantial, but there is no intrinsic or
wave-vectork=27/|T,|. Such periodic solutions can there- memory-related limit to the completeness of this stability
fore be represented by their “unit cellAy(r)=Aq(r,T, analysis.
+r,T,) wherer, andr, lie in the range (0,1). If any eigenvalue, for angk within the Brillouin zone,

Numerically, we will represent this unit cefg(r) on a  has a positive real part, then the solution found is unstable.
regular grid of typically 1&16 (r1,r,) values. We can com- There exist two neutral mode$,=0, for dk=0, corre-
pute the Laplacian term in Eq2) by using a fast Fourier sponding to the two-dimensional translational symmetry of
transform. The real-space basis vectdgsand T, define an  Eq. (2). Thus, any pattern is at best neutrally stable, but we
associated Fourier space with basis vectoysandK, such  will concentrate on stability against modes other than these
that T; .K;=¢g;; . The Laplacian is computed by taking a neutral modes, and if all such modes have eigenvalues with
Fourier transform, multiplying by —|K|?=—|(k;K{ negative real parts we will regard the pattern as stable.
+k,K,)|?, and taking an inverse Fourier transform. In this way, stationary patterned solutions to E2). can

An initial guess at a stationary solutigxny(rq,r,) can be be found as a function of two continuous variables: the con-
refined iteratively using a Newton method to converge to arirol parameterl and the pattern's wave vectdr Further-
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more, the linear stability of any pattern can be assessed b  BELALEZSRAREY
evaluating the growth rate of perturbations with an arbitrary
wave vector.

IV. ROLL EXISTENCE AND STABILITY

To show the effectiveness of this technique, let us dem-
onstrate this procedure for strip@slls). In this caseAq(x),
and soT,=2mx/k, T,=0y. This raises a technical point, in
thatK, should be infinite. This is however not a problem in —
practice. Both the computation of the solution and its 2D
stability can be found by a one-dimensional calculation,
where dk, enters the computation only as a parameter. In
principle, dk, has an infinite range, but in practice it need :
only be explored over a range similar to that used for 05|
dk,—see Fig. 3. '

Figure 1 tracks the roll solution witk=Kk.. The roll am-
plitude is represented by the integrdA|dxdy, which is a -
convenient, if unphysical, representation of the modulation %0
depth of these patterns. The homogeneous soluwierD 070 080 0S0 100 140 120 130 140
(solid line) becomes unstable to perturbations wlth k. at
the value ofl =1 ,(k.) where the suffixni stands for modu-
lational instability. The roll solutioridashed ling bifurcates S
subcritically at tﬁ/is point, forming a solution branch leading of Kk, .and . The traversing lines mark.ed (k) and 'm‘(k)’.

. . respectively, are the limit of pattern existence and modulational
toa Saddle—node“pomt ft: I S”(|.(°)' Here the Splutlon curve instability of the homogeneous solution. Enclosed white, light gray,
turnsl to form an “upper”-solution brapch, which e-\/en-tually dark gray, and black areas, respectively, denote regions where roll
terminates at=1,=7.15. The dotted line markeg in Fig.  gojytions are stable, unstable to hexagons, Eckhaus unstable, and
1 is the locking limit of localized stripe solutions, the behav-;jgzag unstable. Parameters &re-5.4 andg=—1.2.
ior of which is described and analyzed in the companion
paper{9] and[23]. _ _ _ pattern existence and of modulational instability of the ho-

Our solution method can find solutions with any value Ofmogeneous solution, respectively. They cut the knek, at
k, and test their stability. Figure 2 maps the existence anqi:|sn and =1, designated on Fig. 1, which can thus be
stability of rolls in a portion of theK/k.,1) plane. The tra-  yjewed as a section of a surface of which Fig. 2 is a top view.

FIG. 2. Existence regimes of roll patterns plotted as a function

versing lines marked byg(k) andl.,(k) are the limit of From Figs. 1 and 2 it can be seen that betwden
=14(k) andl =1 (k) the roll solutions coexist with a stable
LR A L N L AL homogeneous solution. This is the region where, as expected,
lon  ilen ilue leni ] we can find localized stripe solutions to E®) [7].
i ] The shaded areas, and their associated boundaries in Fig.
0‘8_ ,—\ ] 2, show roll instabilities of different characters, which we
e \ determine by analyzing the perturbation stability of a given
L / : ] . . . . . .
>~ g6l ' ] roll (represented by a point in Fig) @ver its Brillouin zone.
- |
Z: L \\ ] 10 14
= 0.4} | i -
% L \ ] 08 o
o2t . ! ky ky
L \\\ 0z -:-2.
0.0 : — e aREEEEEEE . (a) (b}
e —— Taee aieam am i e B T TRy
1.0 1.2 14 18 1.8 20 ko kot

FIG. 3. Left and right panels, respectively, show the roll to
FIG. 1. Existence behavior of rolls with wave vector and hexagon amplitude instability and maximum growth of zigzag in-
plotted as a function of. Solutions are stable on the solid and stability with dk perpendicular tk. In the dark areas, perturbations
unstable on the dashed lines. The dash-dotted line indicates whehave a postive growth rate, and thus the pattern is unstable. Param-
the roll pattern is unstable to the formation of hexagons. Parameterters arda) k=k., 1=1.37; (b) k/k,=0.88,1=2.1; other param-
areC=5.4 andg=—1.2. etersC=5.4 andfg=—1.2.
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sponding eigenmode induces a longitudinal modulation of

a b

e r ) each stripe, creating chains of spots, but with a phase shift
between the spot locations on neighboring stripes. This cor-
responds to the formation of hexagons rather than, say,
squares.

In the dark gray area, the rolls are Eckhaus unstable,
which is an instability withdk parallel tok [22]. This leads
to a shift in the wave vector of the pattern, pulling it closer to
i a “preferred” value of k within the white area aboveé
(c) (d)

=lh.
This domain is known as the Busse ballddr8], where
the rolls are absolutely stable against all small perturbations.
For example, looking at the part of the Busse balloon below
the modulational instability threshold, we observe that a roll
pattern with any wave vector between about 9and
1.2, is stable againsll perturbations. Sinck, in our case
corresponds to the wave vector with the highest growth rate,
simulations starting from the now unstable homogeneous
state relax to &, patterned state. Simulations started with
FIG. 4. Roll patterns from stability regions in Fig. @) Stable  the wave vector within the Busse balloon, however, remain
roll pattern from Busse balloon with=1.6 andk/k.=1.10. (b)  fixed at their initial value ok. The accurate determination of
Zigzag unstable roll patterh=2.1 andk/k.=0.88). Panel¢c) and  the Busse balloon is one of the key results of this paper and
(d) show the evolution of the amplitude instability associated withg major Strength of our computer-assisted approach to pattern
rolls whenk=k atl=1.37, respectivelyr=150 and 300. Param- existence and stability. Note that this method reveals
eters areC=5.4, =—1.2, andr is the time scaled to a cavity symmetry-breaking, as well symmetry-preserving instabili-
lifetime. ties.
The predicted instabilities are fully confirmed by numeri-
Figure 3 illustrates these calculations. On the lefindl lie  cal simulation, as illustrated in Fig. 4, in which par(@)
in the domain of zigzag instability, and there are growingdemonstrates the stability of a roll inside the Busse balloon,
modes around, /k.=0.3, indicating a transverse instability
of the stripes. This results in a periodic lateral deformation. g
On the right, the roll is unstable to hexagon formation, and
the most unstable perturbation vector is oblique. The corre-

0.605 ';' L ' LR ' L e 2.0
0.50F |
: 1.5
0.40F | :
> Eo .
E : 1.0¢
© 0.30F | .
< E

—0.20F % 05|

AN 0.0
= N : R R e
0.00 — | . | ‘;-—-—I—-————: kik,
1.0 1.2 1.4 1.6 1.8 2.0 FIG. 6. Existence regimes of hexagonal patterns plotted as a

[ function ofk/k, andl. Enclosed white and gray areas, respectively,
correspond to regions where hexagon solutions are stable and Eck-
FIG. 5. Existence behavior of hexagons with wave vektand haus unstable. The lowest black and light traversing lines are again
plotted as a function of. Solutions are stable on the solid and labledlg{k) andl,,(k), and, respectively, are the limit of pattern
unstable on the dashed lines. Parameters @re5.4 and 6 existence and modulational instability of the homogeneous solution.
=-1.2. Parameters ar€=5.4 andd=—1.2.
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(a) =500 (b) t=10000 (c) ©=200000 (d) ©=500000

FIG. 7. Dynamical evolution
of Eckhaus unstable “cracking”
hexagonal pattern of initial wave
vector 0.7&.. Respectively,
shown on top and bottom rows are
|A| and negative images showing
homogeneous islandsvhite) and
hexagonal seablack of |A|. Pa-
rameters aré=1.25,C=5.4, and
0=—1.2.

(e) =500

AT BT
RIS AR Yo

(g) ©=200000 (h) ©=500000

while panels(b)—(d) correspond to the conditions given in present in the simulation is that intrinsically contained within
Fig. 3. the numerics. It can be seen that due to the homogeneous
solutionA=0 being stable, the cracks persist and lead to a
series of localized “islands” of homogeneity in an hexagonal
“sea.” A very slow dynamics of coalescence of homoge-
To further indicate the power of our numerical technique,neous islands take place. The growth law associated to such
Figs. 5 and 6 show the bifurcation behavior and stabilitya slow processif any) and a statistical characterization of
diagram for a hexagonal solution. Again, the solution bifur-the cracking patterns will be given elsewhere. Here, we
cates subcritically fromi=1,(k) and leads to a saddle-node Present in Fig. 8 the evolution in Fourier space of the crack-
point at I=I.(k). The gray shaded regions are of an ing process by using its spectral density. We find that the
Eckhaus-type instability. The line markeég in Fig. 5 is the ~ Most prominent wave vector during the later stages of the
locking limit of hexagonal clusters of cavity solitons as ana-Simulation is approximately 0.82. This suggests that such
lyzed in[9]. hexagonal “islands” are localized hexagonal patterns of the
The shaded area of Fig. 6 correspondingkt& <1 is
comprised of two distinct regions. Of particular interest here
is the Eckhaus unstable area withik; below|,; where the
homogeneous solution is still stable. In this region, the spac-
ing between the spots of the hexagons is too large and th
system “prefers” to pack them closer together. The instabil- 3
ity leads to local contraction of patches of the hexagonal
pattern. The contraction mechanism results in “cracks” ap- —
pearing between these patches, filled initially, with the ho- g
mogeneous solutioA=0. If I>1,, these cracks are filled .y
<C
L
N

V. HEXAGON EXISTENCE AND STABILITY

4 """'!'I""";"I""'""!""""'

by the nucleation of new spots. Dynamically this process I 2
looks like “raindrops” falling into the pattern. In this case, if .
we denote the initial wave vector by and that of the left ©
edge of the Busse balloon W, (1), the total number of
spots increases by a factok(/k)?, until it reaches the
“population” of spots of a stable hexagonal pattern. Since
this new solution lies within the Busse balloon, it is stable
and no more dynamics are observed.

Figures Ta)-7(d) show the dynamical evolution of a

(=]

“cracking” pattern forl <l , where the homogeneous solu- Ol Ll L Lo
tion A=0 is stable. The “sea” of hexagons contracts and 0.70 0.80 0.90 1.00 1.10
“islands” of homogeneity are generated. Panéts—(h) of k/k

c

Fig. 7 display the same dynamics where regions occupied by

hexagons are colored in black and homogeneous regions in i 8. Spectral density plotted as functionskék, . Triangles,
white. Such dynamics are observed in a transverse domain @famonds, squares, and dots, respectively, correspond to cracking at
32X 2m/k, diffraction lengths, and computed on a computa- =500, 10 000, 200 000, and 500 000 as shown in Fig(A) is
tional mesh of 51X 512 gridpoints, wheré&,=0.78&; is the  the Fourier transform of the background free fidldParameters are
initial wave vector. It should also be noted that the only noise =1.25, C=5.4, andg=—1.2.
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(b)

Busse balloon wherk, lies approximately half way between
k. andky(1). By purely geometrical arguments, the relative
areasAged Aang=1— (k/k,)?, wherek, is the wave vector
characterizing the now-relaxed hexagonal “sea.” It should be
noted though, that at the boundaries and in the vicinity of
defects of the hexagonal regions, the separation of peaks
obeys the same law as that presented for clusters of cavity
solitons in[21], wherek,,~k,(1). This effect has an analogy
in solid-state crystals, where the spacing between atoms at
the surface is greater than those in the bulk of the medium.
Finally, for k>k., the Eckhaus instability leads to the  FIG.9. Hexagonal patterns from stabiliy regions in Fig. 6. Left:
coalescing of spotgFig. 9, panel b In some cases, this stable hexagon_al pattern from Busse balloor atl.4 and wave
produces local structures which look like rolls, which may orVector ofkc. Right: Eckhaus unstable hexagonal pattern with
may not be stable. When they are stable, the resulting patteri2-1> and wave vector of kg. Parameters ar&€=5.4 andf
looks like hexagons interspersed with localized stripes. -

before to the best of our knowledge, and have relevance in
the spatiotemporal dynamics of a wide class of systems in
optics and also in other fields of science.

We have demonstrated a powerful numerically based
technique for the calculation of existence and stability of ACKNOWLEDGMENTS
patterns in a staturable absorber optical system. Roll and
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