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Computationally determined existence and stability of transverse structures.
I. Periodic optical patterns

G. K. Harkness, W. J. Firth,* G.-L. Oppo,† and J. M. McSloy‡

Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 ONG, Scotland
~Received 31 May 2002; published 10 October 2002!

We present a Fourier-transform based, computer-assisted, technique to find the stationary solutions of a
model describing a saturable absorber in a driven optical cavity. We illustrate the method by finding essentially
exact hexagonal and roll solutions as a function of wave number and of the input pump. The method, which is
widely applicable, also allows the determination of the domain of stability~Busse balloon! of the pattern, and
sheds light on the mechanisms responsible for any instability. To show the usefulness of our numerical
technique, we describe cracking and shrinking patches of patterns in a particular region of parameter space.
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I. INTRODUCTION

Over the last few years, a large variety of optical syste
have been shown theoretically, and demonstrated experim
tally, to produce self-organized structures in the cross sec
of their output beams. Among such systems are satur
absorbers or Kerr media in cavities, gas cells, liquid-crys
light values, and semiconductor microresonators@1–6#. Be-
cause of the speed and possible compactness of optica
vices, such phenomena have the potential for application
information storage and processing@7,8#.

The structures observed fall mainly into two classes:
calized structures~e.g., cavity solitons@3#! and extended, pe
riodic patterns. It is the latter on which we focus in this pap
because techniques similar to those we discuss here
already been applied to the former in our companion pa
@9# and @10–12#.

We have developed a computer-assisted technique~Sec.
III !, valid for arbitrary values of the system paramete
which can find the stationary solutions of nonlinear par
differential equations such as those used to model the ab
systems. It uses a Newton-type method and a Fourier tr
form to evaluate the spatial derivatives. The Newton meth
automatically gives the linearization around the found so
tions and therefore the method is easily extended to find t
eigenspectrum and the spatial form of any eigenmode. T
the stability of the pattern can be determined, as can
nature of any instability.

In Secs. IV and V, this method will be demonstrated
finding abitrarily accurate roll and hexagonal solutions fo
model of a saturable absorber in a driven optical cav
These patterned solutions will be shown as a function
their wave number and intensity of the homogeneous s
tion with which they coexist, the latter being a convenie
parametrization of the input driving field. We hence find t
patterns’ domain of stability—known as theBusse balloon
@13#. In optics, this domain has previously only, to the best
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our knowledge, been calculated for traveling waves and a
plitude equation patterns in lasers@14–16#, where the prob-
lem is much simpler because these patterns are known
plicitly in analytic form. We confirm our stability analysis b
numerically simulating the dynamical evolution of typic
roll and hexagonal patterns, and present some interes
scenarios in which we accurately determine where these
terns lose stability and the mechanisms by which they do
Finally, Sec. VI provides a brief conclusion.

II. MODEL

We demonstrate our approach using the example o
saturable absorber in a cavity, first introduced in this cont
in @1#, and subsequently studied in some detail in@7,9,17–
21#. Although we have chosen a particular model system,
technique should be very widely applicable for patte
forming models, whether in optics or other fields of scien
We also expect that qualitatively similar instability scenar
can be found adjacent to the Busse balloon of many o
systems.

Our system is usually described using the following p
tial differential equation@1,7#:

] tE52ES ~11 iu!1
2C

11uEu2
D 1EI1 i¹'

2 E, ~1!

whereE(x,y,t) is the slowly varying amplitude of the intra
cavity electric field. The timet is scaled to a cavity lifetime
t and ¹'

2 is the transverse Laplacian]x
21]y

2 . The cavity
contains an ensemble of two-level atoms and is driven b
plane-wave input fieldEI , assumed to be resonant in fre
quency with the atomic transition. The field is detuned byu
from the nearest longitudinal cavity mode. The ‘‘cooperat
ity’’ parameterC gives the aggregate strength of the coupli
between the cavity field and the atoms.

We chooseu521.2 in which case this equation has
unique stationary, spatially homogeneous solutionE5E0.
The corresponding intracavity intensityI 5uE0u2 is thus also
unique, and is a more convenient control parameter thanEI
itself. We also define a fieldA throughE5E0(11A), which
obeys the following equation, fully equivalent to Eq.~1!:
©2002 The American Physical Society05-1
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] tA52~11 iu!A1
2C

11I

2
2C~11A!

11I ~11A!~11A* !
1 i¹'

2 A. ~2!

Linear stability analysis of the trivial homogeneous soluti
A50 of Eq. ~2! ~or of E5E0 of Eq. ~1! @1#! shows that it is
stable outside the rangeI c,I ,I u whereI c,u are the roots of
(I 11)252C(I 21). We takeC55.4, giving I c51.65. Per-
turbations with spatial wave-vectorkc5A2u have positive
growth rate across the entire unstable range, leading to
agonal or roll patterns, depending on parameter values@17#.
No nontrivial analytic solutions of Eq.~2! are known, how-
ever, and so the nature and stability of these patterns hav
be determined numerically. This can be done with straig
forward simulation of the partial differential equation@17#,
but this approach is limited in practice to stable solutio
and typically requires long integration times for parame
scans, especially in two dimensions~2D!. In the next section,
we adopt a different approach, in which we use compu
techniques to find essentially exact stationary solutions
Eq. ~2!, and determine their stability.

III. NUMERICAL TECHNIQUES

We aim first to determine nontrivial stationary field dist
butionsA5As(r ) for Eq. ~2!. We do this by setting the left
hand side equal to zero and solving the resulting bound
value problem. In other works, this approach has been u
to study localized solutions to this and related equati
@2,7,9,11,12#, but here we look for periodic patterns, eith
stripes ~rolls! or hexagons. Rolls and hexagons, and a
square and honeycomb solutions have been found usi
different approach, in which the desired pattern is selec
and if necessary stabilized, by Fourier filtering@20#, but that
method was not used to systematically study the stability
patterns, e.g., as a function of wavevector.

To allow us flexibility in studying different types of peri
odic solutions, we define a set of basis vectorsT1 and T2
such that they are the smallest vectors which satisfy

As~r !5As~r1nT11mT2!,

n andm being integers. For example, vectors of equal leng
separated byp/3 give a unit cell for hexagons with spatia
wave-vectork52p/uT1u. Such periodic solutions can there
fore be represented by their ‘‘unit cell’’As(r )5As(r 1T1
1r 2T2) wherer 1 and r 2 lie in the range (0,1).

Numerically, we will represent this unit cellAs(r ) on a
regular grid of typically 16316 (r 1,r 2) values. We can com
pute the Laplacian term in Eq.~2! by using a fast Fourier
transform. The real-space basis vectorsT1 andT2 define an
associated Fourier space with basis vectorsK1 andK2 such
that T i .K j5d i j . The Laplacian is computed by taking
Fourier transform, multiplying by 2uK u252u(k1K1
1k2K2)u2, and taking an inverse Fourier transform.

An initial guess at a stationary solutionAs(r 1 ,r 2) can be
refined iteratively using a Newton method to converge to
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accurate stationary solution to Eq.~2!. This process can be
repeated for a range of values of the control parameterI and
the magnitude of the pattern’s spatial wave-vectork. Note
that patterns typically exist over acontinuumof k, and that
even though we discretize the field within the unit cell, w
can setk’s value to machine precision. This enables us
meaningfully distinguish between patterns with arbitrar
close values ofk, and so we can accurately determine t
boundary of the Busse Balloon. In contrast, a simulat
method can only find solutions periodic on the simulati
grid, so to determine anything other than a very coarsk
dependence of, e.g., stability is prohibitive in terms of co
puter resource.

Simulation techniques have a similar difficulty with th
perturbation stability of a pattern. Since one can only t
stability with regard to grid-compatible perturbations, o
can only get a coarse representation of the spatial instab
spectrum. In contrast, our method is easily adapted to
the stability of a given pattern to perturbations ofany wave
vector, whether commensurate or not.

We make the ansatz

A~r !5As~r !1udk~r !exp~ idk•r !

1vdk* ~r !exp~2 idk•r !.

By analogy with Bloch functions in solid-state physic
udk(r ) andvdk(r ) have the same periodicity asAs(r ) anddk
can beanyvector within the ‘‘Brillouin zone,’’ meaning that
dk5dk1K11dk2K2 with 2p/uT i u,dki,p/uT i u.

Inserting this ansatz into the discretized Eq.~2! and lin-
earizing inu andv gives a matrix problem as a function o
dk,

d

dt S u

v D 5JS u

v D ,

whereJ is a matrix. For a grid of 16316 (r 1 ,r 2) values,J is
typically of size 5123512. The resulting eigenproblem i
easily solved on modern workstations, leading to eigenval
l(dk). By performing this analysis for appropriate values
ranges ofdk, the stability of the pattern can be determine
Of course the computer time needed to explore the en
Brillouin zone may be substantial, but there is no intrinsic
memory-related limit to the completeness of this stabil
analysis.

If any eigenvalue, for anydk within the Brillouin zone,
has a positive real part, then the solution found is unsta
There exist two neutral modes,l50, for dk50, corre-
sponding to the two-dimensional translational symmetry
Eq. ~2!. Thus, any pattern is at best neutrally stable, but
will concentrate on stability against modes other than th
neutral modes, and if all such modes have eigenvalues
negative real parts we will regard the pattern as stable.

In this way, stationary patterned solutions to Eq.~2! can
be found as a function of two continuous variables: the c
trol parameterI and the pattern’s wave vectork. Further-
5-2
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COMPUTATIONALLY DETERMINED . . . . I. . . . PHYSICAL REVIEW E66, 046605 ~2002!
more, the linear stability of any pattern can be assesse
evaluating the growth rate of perturbations with an arbitr
wave vector.

IV. ROLL EXISTENCE AND STABILITY

To show the effectiveness of this technique, let us de
onstrate this procedure for stripes~rolls!. In this case,As(x),
and soT152p x̂/k, T250ŷ. This raises a technical point, i
that K2 should be infinite. This is however not a problem
practice. Both the computation of the solution and its
stability can be found by a one-dimensional calculatio
where dk2 enters the computation only as a parameter.
principle, dk2 has an infinite range, but in practice it nee
only be explored over a range similar to that used
dk1—see Fig. 3.

Figure 1 tracks the roll solution withk5kc . The roll am-
plitude is represented by the integral* uAudxdy, which is a
convenient, if unphysical, representation of the modulat
depth of these patterns. The homogeneous solutionA50
~solid line! becomes unstable to perturbations withk5kc at
the value ofI 5I mi(kc) where the suffixmi stands for modu-
lational instability. The roll solution~dashed line! bifurcates
subcritically at this point, forming a solution branch leadi
to a saddle-node point atI 5I sn(kc). Here the solution curve
turns to form an ‘‘upper’’-solution branch, which eventual
terminates atI 5I u57.15. The dotted line markedI lk in Fig.
1 is the locking limit of localized stripe solutions, the beha
ior of which is described and analyzed in the compan
paper@9# and @23#.

Our solution method can find solutions with any value
k, and test their stability. Figure 2 maps the existence
stability of rolls in a portion of the (k/kc ,I ) plane. The tra-
versing lines marked byI sn(k) and I mi(k) are the limit of

FIG. 1. Existence behavior of rolls with wave vectorkc and
plotted as a function ofI. Solutions are stable on the solid an
unstable on the dashed lines. The dash-dotted line indicates w
the roll pattern is unstable to the formation of hexagons. Parame
areC55.4 andu521.2.
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pattern existence and of modulational instability of the h
mogeneous solution, respectively. They cut the linek5kc at
I 5I sn and I 5I mi designated on Fig. 1, which can thus b
viewed as a section of a surface of which Fig. 2 is a top vie

From Figs. 1 and 2 it can be seen that betweenI
5I sn(k) andI 5I mi(k) the roll solutions coexist with a stabl
homogeneous solution. This is the region where, as expec
we can find localized stripe solutions to Eq.~2! @7#.

The shaded areas, and their associated boundaries in
2, show roll instabilities of different characters, which w
determine by analyzing the perturbation stability of a giv
roll ~represented by a point in Fig. 2! over its Brillouin zone.

ere
rs

FIG. 2. Existence regimes of roll patterns plotted as a funct
of k/kc and I. The traversing lines marked byI sn(k) and I mi(k),
respectively, are the limit of pattern existence and modulatio
instability of the homogeneous solution. Enclosed white, light gr
dark gray, and black areas, respectively, denote regions where
solutions are stable, unstable to hexagons, Eckhaus unstable
zigzag unstable. Parameters areC55.4 andu521.2.

FIG. 3. Left and right panels, respectively, show the roll
hexagon amplitude instability and maximum growth of zigzag
stability with dk perpendicular tok. In the dark areas, perturbation
have a postive growth rate, and thus the pattern is unstable. Pa
eters are~a! k5kc , I 51.37; ~b! k/kc50.88, I 52.1; other param-
etersC55.4 andu521.2.
5-3
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HARKNESS, FIRTH, OPPO, AND McSLOY PHYSICAL REVIEW E66, 046605 ~2002!
Figure 3 illustrates these calculations. On the left,k andI lie
in the domain of zigzag instability, and there are growi
modes aroundky /kc50.3, indicating a transverse instabilit
of the stripes. This results in a periodic lateral deformati
On the right, the roll is unstable to hexagon formation, a
the most unstable perturbation vector is oblique. The co

FIG. 4. Roll patterns from stability regions in Fig. 2.~a! Stable
roll pattern from Busse balloon withI 51.6 andk/kc51.10. ~b!
Zigzag unstable roll pattern,I 52.1 andk/kc50.88). Panels~c! and
~d! show the evolution of the amplitude instability associated w
rolls whenk5kc at I 51.37, respectively,t5150 and 300. Param
eters areC55.4, u521.2, andt is the time scaled to a cavity
lifetime.

FIG. 5. Existence behavior of hexagons with wave vectorkc and
plotted as a function ofI. Solutions are stable on the solid an
unstable on the dashed lines. Parameters areC55.4 and u
521.2.
04660
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sponding eigenmode induces a longitudinal modulation
each stripe, creating chains of spots, but with a phase s
between the spot locations on neighboring stripes. This
responds to the formation of hexagons rather than,
squares.

In the dark gray area, the rolls are Eckhaus unsta
which is an instability withdk parallel tok @22#. This leads
to a shift in the wave vector of the pattern, pulling it closer
a ‘‘preferred’’ value of k within the white area aboveI
5I rh .

This domain is known as the Busse balloon@13#, where
the rolls are absolutely stable against all small perturbatio
For example, looking at the part of the Busse balloon bel
the modulational instability threshold, we observe that a r
pattern with any wave vector between about 0.91kc and
1.23kc is stable againstall perturbations. Sincekc in our case
corresponds to the wave vector with the highest growth r
simulations starting from the now unstable homogene
state relax to akc patterned state. Simulations started w
the wave vector within the Busse balloon, however, rem
fixed at their initial value ofk. The accurate determination o
the Busse balloon is one of the key results of this paper
a major strength of our computer-assisted approach to pa
existence and stability. Note that this method reve
symmetry-breaking, as well symmetry-preserving instab
ties.

The predicted instabilities are fully confirmed by nume
cal simulation, as illustrated in Fig. 4, in which panel~a!
demonstrates the stability of a roll inside the Busse ballo

FIG. 6. Existence regimes of hexagonal patterns plotted a
function ofk/kc andI. Enclosed white and gray areas, respective
correspond to regions where hexagon solutions are stable and
haus unstable. The lowest black and light traversing lines are a
labled I sn(k) and I mi(k), and, respectively, are the limit of patter
existence and modulational instability of the homogeneous solut
Parameters areC55.4 andu521.2.
5-4
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FIG. 7. Dynamical evolution
of Eckhaus unstable ‘‘cracking’’
hexagonal pattern of initial wave
vector 0.78kc . Respectively,
shown on top and bottom rows ar
uAu and negative images showin
homogeneous islands~white! and
hexagonal seas~black! of uAu. Pa-
rameters areI 51.25, C55.4, and
u521.2.
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while panels~b!–~d! correspond to the conditions given
Fig. 3.

V. HEXAGON EXISTENCE AND STABILITY

To further indicate the power of our numerical techniqu
Figs. 5 and 6 show the bifurcation behavior and stabi
diagram for a hexagonal solution. Again, the solution bif
cates subcritically fromI 5I mi(k) and leads to a saddle-nod
point at I 5I sn(k). The gray shaded regions are of a
Eckhaus-type instability. The line markedI lk in Fig. 5 is the
locking limit of hexagonal clusters of cavity solitons as an
lyzed in @9#.

The shaded area of Fig. 6 corresponding tok/kc,1 is
comprised of two distinct regions. Of particular interest he
is the Eckhaus unstable area withk,kc below I mi where the
homogeneous solution is still stable. In this region, the sp
ing between the spots of the hexagons is too large and
system ‘‘prefers’’ to pack them closer together. The instab
ity leads to local contraction of patches of the hexago
pattern. The contraction mechanism results in ‘‘cracks’’ a
pearing between these patches, filled initially, with the h
mogeneous solutionA50. If I .I lk , these cracks are filled
by the nucleation of new spots. Dynamically this proce
looks like ‘‘raindrops’’ falling into the pattern. In this case,
we denote the initial wave vector byk, and that of the left
edge of the Busse balloon bykbl(I ), the total number of
spots increases by a factor (kbl /k)2, until it reaches the
‘‘population’’ of spots of a stable hexagonal pattern. Sin
this new solution lies within the Busse balloon, it is stab
and no more dynamics are observed.

Figures 7~a!–7~d! show the dynamical evolution of
‘‘cracking’’ pattern for I ,I lk , where the homogeneous sol
tion A50 is stable. The ‘‘sea’’ of hexagons contracts a
‘‘islands’’ of homogeneity are generated. Panels~e!–~h! of
Fig. 7 display the same dynamics where regions occupied
hexagons are colored in black and homogeneous region
white. Such dynamics are observed in a transverse doma
3232p/k0 diffraction lengths, and computed on a compu
tional mesh of 5123512 gridpoints, wherek050.78kc is the
initial wave vector. It should also be noted that the only no
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present in the simulation is that intrinsically contained with
the numerics. It can be seen that due to the homogene
solution A50 being stable, the cracks persist and lead t
series of localized ‘‘islands’’ of homogeneity in an hexagon
‘‘sea.’’ A very slow dynamics of coalescence of homog
neous islands take place. The growth law associated to s
a slow process~if any! and a statistical characterization o
the cracking patterns will be given elsewhere. Here,
present in Fig. 8 the evolution in Fourier space of the cra
ing process by using its spectral density. We find that
most prominent wave vector during the later stages of
simulation is approximately 0.92kc . This suggests that suc
hexagonal ‘‘islands’’ are localized hexagonal patterns of

FIG. 8. Spectral density plotted as functions ofk/kc . Triangles,
diamonds, squares, and dots, respectively, correspond to cracki
t5500, 10 000, 200 000, and 500 000 as shown in Fig. 7.F(A) is
the Fourier transform of the background free fieldA. Parameters are
I 51.25, C55.4, andu521.2.
5-5
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HARKNESS, FIRTH, OPPO, AND McSLOY PHYSICAL REVIEW E66, 046605 ~2002!
Busse balloon wherekn lies approximately half way betwee
kc andkbl(I ). By purely geometrical arguments, the relati
areasAsea/Aland512(k/kn)2, wherekn is the wave vector
characterizing the now-relaxed hexagonal ‘‘sea.’’ It should
noted though, that at the boundaries and in the vicinity
defects of the hexagonal regions, the separation of pe
obeys the same law as that presented for clusters of ca
solitons in@21#, wherekn'kbl(I ). This effect has an analog
in solid-state crystals, where the spacing between atom
the surface is greater than those in the bulk of the mediu

Finally, for k.kc , the Eckhaus instability leads to th
coalescing of spots~Fig. 9, panel b!. In some cases, thi
produces local structures which look like rolls, which may
may not be stable. When they are stable, the resulting pa
looks like hexagons interspersed with localized stripes.

VI. CONCLUSIONS

We have demonstrated a powerful numerically ba
technique for the calculation of existence and stability
patterns in a staturable absorber optical system. Roll
hexagon solutions with their respective stability regim
were identified including their Busse balloons. Symmet
breaking and preserving instabilities were identified a
mechanisms responsible were determined. Our nume
technique is also useful to identify regions of parame
space where novel spatial structures develop. For exam
the cracking hexagons of Sec. V have not been descr
ys

u-
p

.

al

h,
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before to the best of our knowledge, and have relevanc
the spatiotemporal dynamics of a wide class of systems
optics and also in other fields of science.
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vector of kc . Right: Eckhaus unstable hexagonal pattern withI
52.15 and wave vector of 1.8kc . Parameters areC55.4 andu
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